
The Value Stream Metrics
Playbook

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

02

ConnectALL exists to help organizations
achieve higher levels of agility, traceability,
predictability and velocity. We do this
by connecting people, processes and
technology across the software development
and delivery value stream, enabling
companies to align digital initiatives to
business outcomes and improve the speed
at which they deliver software. ConnectALL’s
value stream management solutions and
services allow companies to see, measure
and automate their software delivery value
streams. This guide is a supplement to
ConnectALL’s value stream mapping &
assessment service.

Part of ConnectALL’s comprehensive value stream
management offerings, ConnectALL’s Value Stream
Insights is a customizable, packaged framework
of metrics, analytics, and visualizations designed
to help you accelerate the flow of business value
through your value stream. Including an extensible
data model and general purpose analytics and
visualization application, Insights can graph any
metric that you have data for. The ConnectALL’s
Value Stream Management Platform can pull
information from any system with a ReST interface or
a database. Further, additional data can be placed
into the Insights database via other mechanisms.
However, ConnectALL’s focus is on software
development, Product Management, DevOps,
and IT operations. Therefore, this guide’s focus is
on the software delivery ecosystem and metrics
that support the continuous improvement of such
systems.

There are an endless number of measures and
metrics. We have no intention of cataloging all
of them. Nor do we claim to know “the n must-
have metrics” because that depends on the “for
what.” The recommended set of metrics for a large
enterprise adopting an agile methodology would
not be the same set for an organization trying to
adopt a DevOps mindset, which would not be
the same set that a small agile team would use
to diagnose and improve their own processes. A
portfolio team focused on business value and time
to market would have yet another set.

Rather, our intent is to spell out an approach,
Goal-Question-Metric (GQM), to decide what
to measure and to give a sufficient number of
examples to get started quickly. And also to
catalog many common metrics.

Although this guide addresses financial matters
as it relates to the software delivery ecosystem,
metrics beyond the scope of that ecosystem are
outside of the scope of this guide. For example,
this guide does not address corporate finance,
CAPEX/OPEX, cash flow, profitability, pirate metrics
(customer acquisition, activation, retention, revenue,
referral), customer satisfaction, net promoter score,
product/market fit, shopping cart abandonment,
employee retention, and the like. Such data can
be brought into the system and included in the
Insights dashboard, but this guide’s focus is on
recommending metrics that pertain to improving
software development and delivery.

SCOPE &
FOCUS

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

03

How to Decide What to Measure 04

Typical Goals 06
Predictability Questions 06
Early ROI, Time to Market Questions 08
Technical Quality, Availability and Infrastructure &
Operations (I&O) Questions

09

Lower Cost Questions 09
Investment & Financial Questions 10

Metric Definitions 11
Lean Metrics 11
Predictability Metrics 18
Quality Metrics 21

Investment & Financial Metrics 22
DevOps, Build & DORA Metrics 23

TABLE OF
CONTENTS

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

04

When deciding what to measure, the place to start is
with a goal. First, ask yourself what outcomes you are
after; your goals. Then consider what is needed to
meet those goals. And finally, what metrics indicate
whether you have what you need. You may recognize
this as the Goal-Question-Metric (GQM) approach.

GQM is based on the theory that all measurements
should be goal-oriented. There should be some
rationale and need for collecting measurements,

rather than collecting for the sake of collecting.
Each measurement collected must inform one of
the goals. Questions are then derived to help refine
and articulate the goal. Questions specify what we
need to know that would indicate whether the goal is
being achieved. Finally, choose metrics that answer
the questions in a quantifiable manner. Leading
indicators are preferred, but you can use trailing
indicators when necessary.

HOW TO DECIDE
WHAT TO MEASURE

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

05

The goals you chose should come from an analysis
of your value stream. What problems are you
encountering? What do your users, customers,
or support personnel complain about? What
improvements does the business need from the IT
or software development organization? What do
your existing metrics indicate?

Goals should change over time. A metrics program
should drive improvements. As the system
improves, reevaluate the system and decide on
new goals. Avoid collecting more and more and
more metrics over time. Retire old metrics that no
longer answer the questions that pertain to your
new goals. Maintain only a small set of the most
valuable metrics so that the organization will be
able to focus on the current improvement goals.

This guide suggests typical goals, suggests
questions for those goals, and lists metrics to
answer those questions. At the end of this guide
are definitions for most of the metrics mentioned
in this guide. Where necessary, this guide gives
tips on how to measure or collect such data.

Remember that the objective is not to implement
all of these metrics. Start with a goal, choose a
few questions that if answered would inform your
progress to that goal or that would be a good
diagnostic, then select a few metrics that would
answer those questions. ConnectALL’s Consulting
& Services organization will gladly assist you with
that effort.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

06

At the highest level, as it pertains to software
development and operations, our clients tend to
care about predictability, early ROI, fast time to
market, improved quality, or lower cost.

Predictability Questions

Predictability seems to be paramount. Companies
want teams to get good at making and keeping
promises, consistently delivering working, tested,
remediated code at the end of each sprint. A team
that is not predictable isn’t “bad” – they just aren’t
predictable. Without stable, predictable teams, we
can’t have stable, predictable programs, particularly
when there are multiple dependencies between
teams.

Can the team meet its sprint and release
commitments? Can they deliver the functionality
they intended each sprint or release? Should we
trust them?

Metrics
• Story completion ratio
• Point completion ratio
• Velocity variance
• Throughput variance
• Blockers
• Missed release date history
• Due-date performance

Will the team meet their SLAs?
The following metrics can be useful to monitor
predictability-related SLAs such as MTTR and due-
date performance.

Metrics
• Lead time for production issues (Mean Time to

Repair (MTTR))
• Flow time for funded or approved enhancement

requests
• Throughput variance
• Blockers

Do the engineering teams and product owner teams
have everything they need to perform the work?

Metrics
• Environment availability
• Team-member availability
• Blockers
• Feature roadmap visibility
• Ready backlog
• % ready backlog with open dependencies (a

leading indicator)

Is the team confident that they can deliver the
requested functionality and meet the release
commitment?

Metrics
• Release confidence

Is the team’s throughput or velocity stable?

Metrics
• Velocity variation
• Throughput variation

Can the team control their WIP? Can we discourage
excessive context switching?
WIP is an abbreviation for Work In Process, or Work in
Progress.

Metrics
• WIP to Throughput ratio
• Team member WIP or pair WIP
• The average sprint backlog item cycle time from

In Progress to Done

These metrics are related via Little’s Law. The
inability to control WIP and cycle time in sprint
will increase the likelihood of missing a sprint
commitment, leading to throughput variation and
lack of predictability. The inability to control WIP
at higher levels, such as for features or epics,
will increase the lead/flow time for those items,
decrease predictability, increase risk (i.e. of changing
requirements, priorities and competition), and could
decrease quality.

TYPICAL GOALS

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

07

Is the next release on track to be delivered on
schedule as planned?
If you have to ask this question, consider whether
your releases, sprints, and epics are too big.
Nevertheless, use traditional project management
techniques to answer this question. Compare
percent complete versus the percentage of time
elapsed. A release burn-up chart is a great visual
indicator. Another effective measure is release
confidence.

Metrics & charts
• Release confidence
• Release burn-up chart

Are we managing risks?

Metrics
• Risk score

Are we controlling scope?
Strike a balance between trying to know everything
in advance, preventing change, and over planning on
one end, and under planning on the other end. Look
for an appropriate response to change.

Metrics
• Unplanned work ratio
• Investment mix
• Epic effort estimate versus actual

Are our epic effort estimates good? Are we able to
constrain work to budget?

Metrics
• Epic effort estimate versus actual

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

08

Early ROI, Time to Market Questions

A lean principle is to favor small batch sizes: smaller
epics, smaller releases, smaller user stories, shorter
sprints. Smaller items flow through the value stream
more quickly, have fewer dependencies and
blockers, and are less complex to code, test and
debug. These dynamics allow for a faster time to
value.

Can the team frequently deliver working, tested,
remediated code?

Metrics
• Lead time
• Flow time
• Epic size (effort estimate)
• Release/deployment frequency
• Sprint duration

As for all metrics, carefully choose which classes
of work to measure. Usually, time to market only
matters for certain classes of work, or it’s only a
useful indicator for certain classes of work. Flow
time for epics is useful if epics represent valuable
and minimal increments of prioritized business value.
You might have a prioritized backlog of epics, so
since some epics wait in the backlog behind higher
priority work, flow time is more appropriate than lead
time.

If you have a class of work in which certain customer
requests need to move quickly from the customers’
point of view, be able to identify just that class of
work in your systems and use lead time. For example,
you may need to distinguish those priority customer
requests that need to be delivered quickly versus all
other customer requests.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

09

Technical Quality, Availability and
Infrastructure & Operations (I&O)
Questions

Can the process catch issues?

Metrics
• Escaped defects
• Production impact, latent defects

Are we able to deliver value?

Metrics
• Business value to maintenance
• Investment mix

Are defects being addressed in a timely manner?

Metrics
• Defect aging and defect backlog

Is the code testable, malleable, and maintainable?
Are we incurring technical debt?

Metrics
• Cyclomatic complexity
• Code coverage
• Investment mix

Are we meeting our uptime expectations?

Metrics
• Uptime
• Impacted minutes
• Mean Time to Repair (MTTR) (as a diagnostic)

Are we providing good availability?

Metrics
• Planned downtime
• Impacted minutes

Is the system performing as expected?
• Response time
• Memory & CPU utilization as a diagnostic metric

Are we able to recover quickly?
• Mean Time to Repair (MTTR)

Lower Cost Questions

There is enough truth to the maxim “you get what you
pay for” that average cost per headcount is not an
ideal measure. Nor should organizations compare
velocity (story points) per person or points per team.
Nor lines of code. Function Point (FP) Counting is the
best approach to comparing the output of multiple
teams, but requires a trained and experienced FP
counting professional, stable teams, and comparably
sized projects. FP counting doesn’t work well for
ongoing products being maintained and enhanced
with small agile user stories.

Comparing your IT Spend to others in your industry
can be informative, but remember that investing in
IT can be a good strategy and give a company a
competitive edge. Such a metric is rarely tooled
up in a metrics dashboard, but is often evaluated
manually on a quarterly or annual basis using
information from outside analysts.

Can we control scope?

Metrics
• Unplanned work

Can we release a minimum viable product?

Metrics
• Unplanned work
• Flow time (for epics)
• Batch size (stories per epic)

Are we wasting time?

Metrics
• Abandoned work

Are we over or under spending on maintenance?

Metrics
• Investment mix
• Supported release WIP

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

10

Investment & Financial Questions

Are we actually investing as intended?

Metrics
• Investment mix

Are we making good investment decisions?
In his book Product Development Flow, Don
Reinertsen says if you quantify only one thing,
quantify cost of delay. Make prioritization decisions
based on cost of delay divided by duration (CD3), a
Weighted Shortest Job First (WSJF) approach. If CD3
is used for prioritization, it wouldn’t likely appear on a
metrics dashboard.

After delivering an epic, after it has been in
production long enough to evaluate the results, it’s
good for the product, program, or portfolio team
to evaluate the effectiveness of that epic. Did it
deliver the intended result? Was the decision making
effective? What should we do differently going
forward? If the process evaluates such questions
for every epic, there may be no need for a metric.
Nevertheless:

Metrics
• Planned Outcomes Score

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

11

This chapter is a large glossary of metrics, grouped
by type of metric. ConnectALL does not recommend
starting out by perusing this list. Although skimming
through this list might give you useful thoughts, the
best approach is top-down, using the GQM method
explained above.

Lean Metrics

Several lean metrics are measures of time, and are
thus measured and reported similarly and have many
of the same usage concerns and modes of misuse:
Lead Time, Flow Time, Cycle Time, Process Time,
Queue Time, Non-Value-Added Time, Blocked Time
and Wait Time. This guide gives a longer discussion
of these issues under Lead Time, and a shorter
treatment of the others.

Lead Time (80th Percentile, Variation & Trend)

Lead time for a given class of work is the duration
between when the request was made and when
the solution is available to the requestor. Lead
time is always from the customer’s or end user’s
perspective. For only certain classes of work will you
want to use lead time. For other classes of work, flow
time or cycle time will be more appropriate.

While it may be okay to use average lead time in
order to see if you have an improving trend, we
strongly advise against using the average because
someone will misinterpret or misuse the metric.
Instead, use a percentile, such as the 80th percentile.
For illustration, the 25th percentile is the point at
which 25% of the observations fall below that point.
The 80th percentile of your lead time observations
(measures) is the point at which 80% of your historical
lead time observations fall below that point. The 50th
percentile is not always the median, but for the sake
of this guide we can say it’s close.

Average, however, could be materially off. It’s worse
to use the average than the median because the
average can be thrown off by outliers more than
would the median and 80th percentile. If you are
good enough with statistics to correctly identify
and remove outliers, that’s great, but few people do
that at all, much less with statistical precision, and it’s
really not necessary for most IT work.

Again, it may be okay to use the median for
monitoring the trend -- to see if the median
is improving. But using it for forecasting or
expectation-setting would be bad. You see, when
using median, 50% of observations took less time,
but 50% took longer. You wouldn’t want to tell a
customer that he has a 50/50 chance of getting
a fix in two weeks. Telling them they have an 80%
probability of getting a fix in three weeks, in my
experience, is more palatable. You want to be able
to tell your customers or marketing or management
or support or program management that “80% of
the time we resolve this kind of issue in n weeks.”
Most people are happy with those odds. Anything
higher takes in too much of the “long tail” of the
distribution and makes forecasts not be terribly
useful for planning. Anything less increases risk of
disappointment.

METRIC DEFINITIONS

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

12

You don’t need a ton of data. Depending on scale
(number of observations and how long lead time
actually is), data beyond 24 weeks is most likely out
of date.

What to do with your Lead Time chart? I publish my
“80% lead time expectation”. I talk about it with the
people who are anxiously waiting for the delivery.
I talk about it with my engineering team. I talk
about it with my management team, PMO, project
managers and program managers. I talk about it
with my lean and agile coaches and consultants and
Scrum Masters. I talk about it with my team leads. I
want everyone in the loop and on board with the
improvement goal. I use it to explain how certain
behavior, such as expedites and high WIP, work
against improving the lead time expectation.

What to look for:
• Look at your bar chart showing the changes in

your lead time expectation over time. See if it’s
moving in the right direction. Use A3s, Toyota
Kata, lean principles, and systems thinking to
improve the system. Engage your upstream
and downstream neighbors in the improvement
process and in making process policies explicit.

• Fixes for production bugs should have a
short lead time. If the average lead time is
unsatisfactory, look for an improving trend.

• For predictability, look for a narrowing spread
(standard deviation) on a control chart.

• For forecasting, use monte carlo simulation.
• For expectation setting for individual items, use

the 80th percentile.

Flow Time, Process Time (80th Percentile, Variation
& Trend)

Sometimes called process time, flow time for a
given item is the duration between when the request
was approved or when the work was started to the
time that the work was completed. Flow time is an
internally focused measure, from the perspective of
the software development value stream.

Whereas lead time is from the customer’s
perspective, flow time is focused on the software
delivery value stream, and excludes time that the item
sits in the backlog waiting to be released into the
software development flow. It may also exclude time
after a build is complete or release is available, but
not yet installed at the customer’s location. That is,
this metric excludes factors outside of the control of
the software development process.

Just like for lead time, we recommend using the 80th
percentile instead of the average or mean lead time.

What to look for:
• Most companies want a short flow time for

epics, for approved customer requests, or other
enhancements. If the flow time is unsatisfactory,
look for an improving trend.

• For predictability, look for a narrowing spread
(standard deviation) on a control chart.

• For forecasting, use monte carlo simulation.
• For expectation setting for individual items, use

the 80th percentile.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

13

Cycle Time (Variation & Trend)

Average cycle time for a given class of work is the
average duration between any two states in the
value stream. Stated differently, it’s the average time
between point A and point B.

Cycle time is an internally focused measure, from
the perspective of the software development value
stream. It is usually used to examine a particular
phase of the value stream. For example, the
development cycle time or QA cycle time can be a
useful diagnostic for stories, defects, and epics. If
not pair-programming, the peer-review cycle time
might be of interest.

‘Median’ won’t tell you if you have a problem with
some extremely high or low values. ‘Average’
doesn’t really help you with that either. Nor will the
80th percentile. A control chart is a very good
visualization of what’s really happening with your
cycle time.

What to look for:
• Agile teams, or those teams using an iterative

process, should want a short cycle time for all
backlog items in their sprint. Agile organizations
should also want a short cycle time for their
epics to be “in progress.” If the average cycle
time is unsatisfactory, look for an improving
trend.

• For predictability, look for a narrowing spread
(standard deviation) on a control chart.

Queue Time, Non-Value-Added Time, Wait Time
(Average & Trend)

Queue time is a cycle time measure. Queue time is
the amount of time work sits waiting for actions to
be performed. This could be the time for a single
queue, or the sum of times waiting in multiple queues
across a value stream. This could be the average
wait time per ticket, or average wait time per month,
or ratio of wait time to value-added time. The latter
(ratio of wait time to value-added time) is best if
you have the data. The first (average time per ticket)
is susceptible to changing work sizes and splitting
stories. Such behavior can make the metric improve
without improving the system’s wait time per feature.
But wait time per month might be susceptible (up or
down) to fluctuating throughput due to fluctuations
in team member availability.

Many organizations do not model all of their
significant wait states in their kanbans or ALM tooling
and as a result cannot see the magnitude of delay. A
value stream mapping session with a careful eye out
for queues and delays can help identify additional
states to add to your kanban.

What to look for:
• Queue time is crucial for items that must

move quickly through the value stream, such
as production issues. Queue time is usually
less useful for stories waiting in a release or PI
backlog.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

14

Blocked Time (Average & Trend)

Similar to cycle time, time blocked is the average
amount of time that items stay blocked by something
or someone outside of the team that is being
blocked. Blocked time is a measure of the negative
impact of dependencies outside of the team.
This metric can include only those items that were
blocked, or can be averaged over all items (i.e.,
including those that were never blocked).

What to look for:
• Blocked work interrupts flow, breaks

concentration, and introduces delays. Time
blocked may indicate work that wasn’t sufficiently
ready and shouldn’t have been started. It may
indicate that more backlog refinement or more
rigorous dependency management is needed.

Blockers (Average & Trend)

The blockers metric is a count of blocking events
that happen over a period of time, such as per
month or per sprint. A blocking event is something
that happens outside of the team’s control that
impacts the team’s ability to move forward.

The blockers metric can be used as an alternative
to, or as a compliment to, the blocked time metric.
Depending on your source data, one of these might
be easier to collect than the other.

What to look for:
• Blocked work interrupts flow, breaks

concentration, and introduces delays. Blocked
work may indicate that the item wasn’t sufficiently
ready and shouldn’t have been started. It may
indicate that more backlog refinement or more
rigorous dependency management is needed.

• Consider whether to count or to ignore blockers
that do not impact the outcome of the sprint.
Weigh the cost tradeoff between more thorough
refinement and dependency management versus
blocked work. If a Scrum team is able to remove
the blocker and finish the story or sprint as
planned, then maybe that blocker doesn’t need
to be counted. If this is the case, then count
blockers at the end of the sprint. (Count items
that remain blocked at the end of the sprint.)

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

15

WIP to Throughput (Ratio & Trend)

Lead time, flow time, and cycle time are negatively
impacted by increasing amounts of work in process
(WIP). Shoving more work into the system slows
everything down. Building a large inventory of
untested code typically increases the costs and
time associated with fixing defects. Building up too
much ready backlog can lead to wasted effort when
priorities, requirement details, or the market changes.

An appropriate level of WIP is relative to the average
throughput, and to the definition of “in progress”
necessitated by the specific GQM in question,
and the people or team involved. I suggested
two different scopes for “in progress” in the prior
paragraph: one included just development and
QA, which would be useful for diagnosing testing
backlog or lag. The other also included PO/BA and
team efforts to ready a backlog. “In progress” for
epics would naturally include a larger period of time
than “in progress” for user stories.

What to look for:
• Large agile organizations trying to deploy

every 2 weeks should not have more than 6
weeks’ worth of throughput (user stories) active
in a team from Ready to Delivered. That’s 3
or 4 weeks of ready backlog, 2 weeks for the
current sprint, and maybe a week of post-sprint
verification. That would be a ratio of 3. Two
weeks of ready backlog might be sufficient
for a smaller, more nimble organization with no
dependencies and little structure or overhead. A
team practicing continuous deployment should
have an even lower expectation for this ratio. If
your ratio is high, look for an improving trend.

• At a sprint level, the WIP to throughput ratio
should be much less than 1. For example, if a
team has an average throughput of 20 items per
sprint and if they, on average, have 20 items in
progress (actually being developed), that means
about all of their work is in progress for almost
the whole duration of the sprint. The number of
team members is also a factor, but to put some
bounds on it, 10% is probably very good and
50% is not that good.

• A related measure is the ratio of the percentage
of planned work completed to the percentage
of time consumed. For example, with iterative
development, 80% of the story points should
be completed by the time the iteration is 80%
through.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

16

WIP (Quantity)

We previously discussed the WIP to Throughput
Ratio, but sometimes the ratio isn’t needed.
Sometimes the raw amount of WIP is a sufficient
metric.

What to look for:
• The number of epics or initiatives each team

is working on should be 1. On your metrics
dashboard, list teams with more than 1 epic
in progress. But remember, it’s not the team’s
fault. Fix the system. Don’t blame the team. For
any given software product, the organization
producing it should strive to have a very
small number of epics in progress (actually in
development), typically only 1 or 2.

• The number of items being worked on per
individual should be one per individual, or less.
It’s usually easier to gather this data at a team
level. At a team level, WIP should be less than
the number of individuals. Encourage working
together. If you are pair-programming most of
the time, your WIP could be less than the number
of pairs: With TDD, good test coverage, and
good Continuous-Integration practices, you
should be able to get multiple pairs on one user
story.

• The number of open sprints should be 1 per
team.

• You may want to monitor the number of releases
being maintained (fixed, patched, level 3
support) or the number of releases being
supported (help desk, service desk, level 1 and 2
support).

Batch Size

Another lean principle is to favor small batch sizes:
smaller epics, smaller releases, smaller user stories,
shorter sprints. Smaller items flow through the value
stream more quickly, have fewer dependencies and
blockers, and are less complex to code, test and
debug. These dynamics allow for a faster time to
value.

Two batch size metrics, epic size and sprint duration,
are discussed below.

Epic Size (Average & Trend)

Epic size could be a measure of effort estimate, as
in story points or team-months, and can also be
measured in terms of the number of stories the epic
contains.

As a measure of estimated effort, there is inherent
inaccuracy in this metric. Such error can be offset
by using a measure of actual time, such as flow
time. Nevertheless, epic size is a leading indicator
whereas flow time is a trailing indicator. Therefore,
it can be valuable to accept the error in exchange
for an early indicator of what your future flow time
might become. Also, if your epic size is trending up
(to larger epics), expect some other metrics to also
worsen in the future, such as blockers and quality.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

17

Sprint Duration (Quantity)

Like release/deployment frequency, if sprint duration
is consistent across your organization, stable (not
variable), and known, then there is probably no need
to automate the collection and display of this metric.
This metric would be useful if you are in a very large
organization with diverse sprint lengths that is in an
effort to shorten and standardize.

As of 2020, month-sized sprints have been falling
out of favor for many years. The two-week sprint
duration still seems to be very common.

Abandoned Work (Quantity)

Abandoned work is any item (epic, feature, story)
that is thrown away or discarded. A small amount of
abandoned work can be healthy, if it’s abandoned
early enough. Abandoning items earlier in the value
stream is, of course, much better than abandoning
them in later phases. It’s much worse to throw away
some developed feature once it is in QA. It’s much
better to throw it away before any coding is done.
And it’s even better if it can be abandoned before
it is fully “ready” (meeting the team’s definition of
ready) as we don’t want to waste the Product Owner
Team’s time either.

Report the raw number of items abandoned by
phase. It’s usually sufficient to record whether the
item was abandoned before being ready, after
being ready but before development starts, or after
development started.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

18

Predictability Metrics

Throughput (Variation & Trend)

Throughput is the amount of work a team can
complete in a defined time period, typically a month.
Average throughput can be used for forecasting, but
monte carlo simulation is a better approach.

The throughput variation metric helps teams become
stable in their performance. This will encourage
organizations to manage risks and dependencies
before starting the work. Recent throughput within
20% of average throughput is good. We want to
see a reduction in the standard deviation of the
throughput over time.

Variation can be computed as the standard deviation
divided by the average. We recommend including
data from at least the last 4 periods, but no more
than 6 months of data.

What to look for:
• Organizations that are after predictability should

look for low throughput variation (lower than
0.20), and a trend that is stable or gradually
increasing.

Velocity (Variation & Trend)

Velocity is an alternative measure of throughput.
Velocity is the measure of story points completed
in a sprint. Average velocity can be used for
forecasting, but monte carlo simulation is a better
approach.

The velocity variation metric helps teams become
stable in their performance. This will encourage
organizations to manage risks and dependencies
ahead of the sprints, and to not overcommit within
the sprint. Recent velocity within 20% of average
velocity is good. We want to see a reduction in the
standard deviation of the velocity over time.

Variation can be computed as the standard deviation
divided by the average. We recommend including
data from at least the last 4 periods, but no more
than 6 months of data.

What to look for:
• Organizations that are after predictability should

look for low velocity variation (lower than 0.20),
and a trend that is stable or gradually increasing.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

19

Story and Point Completion Ratio

These ratios are computed as:
• Number of Committed Stories Delivered /

Number of Committed Stories
• Number of Committed Points Delivered /

Number of Committed Points

This metric helps teams become predictable in their
estimating and sprint planning. It encourages smaller
stories and more effort in getting work ready prior to
the sprint. We like to see delivered points and stories
to be within 10% of the commitment.

Team-Member Availability (Ratio & Trend)

Team-member availability ratio is computed as:
headcount available / headcount expected

You may want to quantify the extent to which planned
team members aren’t available. Stability is critical
for teams to be able to make and keep release
commitments. When people are pulled across
multiple teams – or are not available as planned
– it is unlikely that the team will be able to deliver
predictably. We like to see this be within 10% of the
plan.

Release Confidence

A great leading indicator of the likelihood of meeting
a release date (time and scope) is to just ask the
people involved. Use the team’s insight and their own
sense of their record of performance to evaluate the
team’s confidence that the release objectives can be
achieved.

You can use a simple 3-, 4-, or 5-point scale ranging
from very unconfident to very confident. You can
poll everyone involved with an online survey, or just
get a consensus vote from certain people such as a
technical lead, test lead, and scrum master. If a team
has heavy dependencies, they should include a vote
from the agile project manager of the team handling
the dependencies. You can ask this just once, at the
end of PI planning, or more frequently, such as each
sprint or weekly.

Risk Score (Trend)

A common way to quantify risks is to identify risks,
score each with a probability and impact, multiply
those two scores, add up all the values, and track the
trend over the course of the release. And, of course,
work the risks, preferably early.

An (better) alternative is to evaluate the overall risk
of a program across a small number of dimensions,
such as technical risk, business risk, quality
risk, schedule risk and organizational risk. Risk
management is outside the scope of this document.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

20

Unplanned Work (Ratio & Trend)

Some amount of unplanned work added to a
release or to the top of the backlog can indicate
appropriate response to learning or to a fast
moving/shifting competitive landscape. Too much
unplanned work can cause issues when predictability
is needed, such as when other groups like
operations, marketing, or sales are involved with roll
out plans.

An unplanned work metric is useful once you have
determined that your organization or some team
is too far to one extreme and needs to move to a
more moderate position. Tracking the trend can
give you an indication of movement in the right (or
wrong) direction. This metric can also be useful as a
diagnostic tool if you are having trouble with a lack
of predictability and other metrics haven’t helped
resolve the issue.

Don’t let this metric (or any metric) outlive its
usefulness or take on a life of its own.

Feature Roadmap Visibility (Quantity)

Program teams (sometimes called product owner
teams or the 3 amigos) need to make work ready
ahead of the team doing the work. For program
teams to make work ready, there needs to be a
roadmap of prioritized features sufficient to drive
the program team’s work. How far out this planning
horizon needs to be depends on many factors, such
as: the stability of the market or industry; prioritization
stability; needed agility (the ability to respond
quickly to changing circumstances); the level of
dependencies the program team has on outside
SMEs; the level of dependencies the engineering
team doing the work will have on outside teams or
SMEs; and the lead time needed to decompose
work into ready stories. The program team needs
to plan far enough ahead so that work doesn’t get
blocked and so that the engineering teams don’t get
starved for work or have to work on stuff that really
isn’t ready, but not so far ahead so as to create waste
due to change or uncertainty.

There are many ways to measure this. An easy
approach is to “right-size” features so that they
are each 1, 2, or 3 sprints big. You could also use
“team-weeks.” Record the estimates (budget) in your
tooling.

Decide what the target range for roadmap visibility
should be. In the dashboard, list the teams that are
operating outside of the target range.

Feature Roadmap Visibility is a measure of ready
backlog of features. Ready Backlog (below) refers to
the ready backlog of user stories.

Ready Backlog (Quantity)

Software development teams need a steady stream
of ready work fed to them. They also need some
visibility into work that is coming up in the near future
for a myriad of reasons: staffing, planned time off,
holidays, special skill or SME availability; to plan for
outside dependencies; to make informed design
decisions. Too little ready backlog can lead to
scrambling to make work ready, unclear stories or
acceptance criteria, and fewer options when the
sequencing of work needs to be adjusted. Too much
ready backlog can lead to waste, especially in the
face of shifting priorities or changing requirements
or market needs.

One sprint, or two-weeks worth, of ready backlog is
on the low side. Two sprints, or one month, of ready
backlog is about right in our experience. Your needs
may differ from these guidelines.

How much is “one sprint worth” or “two-weeks worth”,
of course, depends on team throughput or velocity
and varies by team. Decide on a target range, such
as 2- to 3-sprints worth. Have a means to mark
stories as “ready” in your tooling. Divide the size of
the ready backlog by the throughput and compare
against the target range. List the teams that are
operating outside of the target range.

Epic Effort-Estimate Versus Actual

Don’t compare story point estimates to actual
hours. Estimating duration for epics, however, is a
good practice. Don Reinertsen, in his book Product
Development Flow, says to quantify the cost of
delay and to take expected duration into account
for prioritization. Estimate epic duration in terms
of sprints or team-months. If you estimate an epic
to require, say, 3 sprints, and that epic is on the
near-term roadmap, that estimate then becomes
a budget. The product or program team should
endeavor to constrain the work to that budget.

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

21

Quality Metrics

Production Impact, Latent Defects
(Quantity & Trend)

Production impact, sometimes called latent defects,
are issues over a certain severity (i.e., ignoring minor,
cosmetic) that are found in production that were
introduced per release or per month. If it is difficult
to identify which release or build introduced the
defect, it is often sufficient to attribute a bug to the
product version in which it was found.

Graph the quantity over time so that the history and
trend can be observed. How much is acceptable
depends on many factors, such as the number of
users and the definition of severity levels. Defining a
target for each application is a good practice.

Escaped Defects (Quantity & Trend)

Similar to production impact, the escaped defects
metric is a measure of issues over a certain severity.
Escaped defects, however, are caught before
production, but after the end of the sprint in which
they were introduced. Such defects should have
been caught during the sprint, but were caught
during later phases, such as during integration
testing or regression testing. They have “escaped the
sprint”.

Graph the quantity per sprint so that the history and
trend can be observed. Defining a target is a good
practice.

Defect Aging and Defect Backlog (Trend)

Organizations don’t want to build up a backlog of
unresolved defects. The backlog of defects should
not be increasing for any severity level, except
perhaps for the lowest severity. The absolute number
of the highest severity defects should be extremely
low.

Also, the age of the defects in the highest category
should not be increasing. If it is, then there may be a
process or prioritization issue. It may be that certain
issues are incorrectly classified.

Uptime (Percentage & Trend)

Likely measured on a weekly or monthly basis, uptime
is relative to the planned (scheduled) application
availability. This metric is the total available minutes
divided by the planned available minutes. A graph
showing history and trend is sufficient, but adding
the SLA threshold is a very good practice.

Planned Downtime (Quantity & Trend)

Graph the planned downtime (such as in minutes
per month) for all applications or services over time
in order to see the trend and determine if planned
downtime is improving or if it is out of line for some
application or service.

Impacted Minutes (Quantity & Trend)

Likely measured on a weekly or monthly basis, this is
a measure of time that a service or application is up,
but is impacted by high severity issues. This metric
is the total time in minutes that the system was up
but impacted. A graph showing history and trend
is sufficient, but adding the SLA threshold is a very
good practice.

Adding the number of such incidents to the graph
can be informative.

See also (related metrics)

• Investment mix
• Business value to maintenance

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

22

Investment & Financial Metrics

Investment Mix (Percentages)

Many organizations plan to invest across multiple
categories or investment themes, such as
maintenance, innovation, enhancements, roadmap,
and usability. Such organizations should check their
actual investment against the plan on a monthly or
quarterly basis. Getting a complete picture may
require careful categorization of all user stories
and defects; that is, at a low work item level. Other
organizations might only be interested in such
categorization at the feature or epic level. In any
event, an investment mix pie chart is ideal.

Business Value to Maintenance (Ratio)

Organizations, of course, want their teams to deliver
lots of business value, but maintenance shouldn’t
be neglected. Neglecting maintenance can cause
teams to slow down, negatively affecting the rate
of business value delivery. Product lifecycle stage,
average effort required for each class of work
item, and numerous other factors influence what
an acceptable business value to maintenance ratio
should be.

The CAPEX to OPEX ratio is similar, though not
addressed in this guide.

A simplistic approach to this metric would be to
compare the count of user stories versus the count
of defects. However, not all user stories provide
new business value and not all defects should be
categorized as maintenance. Most defects should
be considered rework instead of maintenance. A
better approach would be to categorize all work
according to a set of investment themes. Distinguish
between rework, maintenance, enhancements, and
the like.

Planned Outcomes Score

Organizations that use an opportunity canvas or
epic canvas approach have questions on the canvas
about the intended outcomes expressed in terms of
the business need (revenue, market share, shopping
cart abandonment, etc.) that should be moved
and by how much. How to score such results is
organizationally specific.

Others
• Resource spend by resource type (dev, QA, BA,

architecture, manager)
• Financial variance (plan versus actual)

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

23

DevOps, Build & DORA Metrics

Some of the Quality Metrics listed above could
arguably be listed in this section instead: uptime,
planned downtime, impacted minutes. Such metrics
reflect quality, and are not repeated here.

Release/Deployment Frequency (DF)

Release frequency is a gating factor for time to
market and early ROI. Companies can gain value from
developed software only if it’s released (deployed)
into production. Companies whose releases
are a big deal and a subject for much project
management, those who have infrequent releases
and large epics, those who bring everyone together
for big-room PI planning, probably know their
release frequency and don’t need to automate the
collection and display of such metrics. Automating
the collection and display of this metric makes sense
when different teams have different frequencies,
once frequency is more often than quarterly, and
when there is a strong desire to increase the
frequency across all teams. (You get what you
measure.)

Mean Lead Time for Changes (MLT)

Also known as Change Lead Time, this metric is
sometimes defined as: mean lead time for any
change, defect or enhancement to go from idea to
production. Others define it as the mean (cycle) time
from code commit to production. See Lead Time and
Cycle Time above.

Mean Time To Recover (MTTR)

Mean Time To Recover/Repair/Restore represents
the average time required to repair a failed
component, system, service or defect (i.e,. in
production). This is yet another measure of Lead
Time, discussed above.

Change Failure Rate (CFR)

The change failure rate is simply the percentage of
deployments that fail.

Others
• Pull requests
• Build failures
• Security scans
• Cyclomatic complexity
• Code coverage

ConnectALL’s Value Stream Metrics Playbook
Whitepaper

24

For more information
visit or contact

www.connectall.com
+1 800 913 7457
sales@connectall.com

